H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells.
نویسندگان
چکیده
Photoproduction of H2 and activation of H2 for CO2 reduction (photoreduction) by Rhodopseudomonas capsulata are catalyzed by different enzyme systems. Formation of H2 from organic compounds is mediated by nitrogenase and is nto inhibited by an atmosphere of 99% H2. Cells grown photoheterotrophically on C4 dicarboxylic acids (with glutamate as N source) evolve H2 from the C4 acids and also from lactate and pyruvate; cells grown on C3 carbon sources, however, are inactive with the C4 acids, presumably because they lack inducible transport systems. Ammonia is known to inhibit N2 fixation by photosynthetic bacteria, and it also effectively prevents photoproduction of H2; these effects are due to inhibition and, in part, inactivation of nitrogenase. Biosynthesis of the latter, as measured by both H2 production and acetylene reduction assays, is markedly increased when cells are grown at high light intensity; synthesis of the photoreduction system, on the other hand, is not appreciably influenced by light intensity during photoheterotrophic growth. The photoreduction activity of cells grown on lactate + glutamate (which contain active nitrogenase) is greatly activated by NH4+, but this effect is not observed in cells grown with NH4+ as N source (nitrogenase repressed) or in a Nif- mutant that is unable to produce H2. Lactate, malate, and succinate, which are readily used as growth substrates by R. capsulata and are excellent H donors for photoproduction of H2, abolish photoreduction activity. The physiological significances of this phenomenon and of the reciprocal regulatory effects of NH4+ on H2 production and photoreduction are discussed.
منابع مشابه
Increased photoproduction of hydrogen by non-autotrophic mutants of Rhodopseudomonas capsulata.
Non-autotrophic ( Aut -) mutants of Rhodopseudomonas capsulata B10 were tested for their efficiency of nitrogenase-mediated H2 production. Three of these mutants ( IR3 , IR4 and IR5 ) showed an increase stoichiometry of H2 production, mediated by nitrogenase, from certain organic substrates. For example, in a medium containing 7 mM-L-glutamate as nitrogen source, strain IR4 produced 10-20% more...
متن کاملSemi-solid state fermentation of bagasse for hydrogen production; the cost-effective approach in Indian context
Semi-solid state fermentation route of hydrogen production from agrowaste sugarcane bagasse was tried using the photosynthetic bacterium Rhodopseudomonas (BHU strain-1) and the non-photosynthetic Enterobacter aerogenes MTCC2822. The process seems an alternative to submerged fermentation that requires high volumes of nutrient broth. Bagasse (10 g) pre-hydrolyzed with NaOH (2%, w/v) was coated wi...
متن کاملCharacterization of a soluble NADH-independent nitrate reductase from the photosynthetic bacterium Rhodopseudomonas capsulata.
The assimilatory nitrate reductase was purified 60-fold from a newly isolated, nitrate assmilating strain of the photosynthetic bacterium Rhodopseudomonas capsulata. The enzyme had a molecular weight of about 180 000 dalton and was typically prokaryotic in that it was not active with reduced pyridine nucleotides but rather with reduced flavins.
متن کاملBreakdown of food waste by anaerobic fermentation and non-oxygen producing photosynthesis using a photosynthetic bacterium.
Large volumes of food waste are produced by restaurants, hotels, etc generating problems in its collection, processing and disposal. Disposal as garbage increases the organic matter in landfills and leachates. The photosynthetic bacterium Rhodopseudomonas palustris (CGA 009) easily broke down food waste. R. palustris produces H2 under anaerobic conditions and digests a very wide range of organi...
متن کاملInorganic nitrogen assimilation by the photosynthetic bacterium Rhodopseudomonas capsulata.
The photosynthetic bacterium Rhodopseudomonas capsulata lacks glutamate dehydrogenase and normally uses the glutamine synthetase/glutamate synthase sequence of reactions for assimilation of N2 and ammonia. The glutamine synthetase in cell-free extracts of the organism is completely sedimented by centrifugation at 140,000 X g for 2 h, is inhibited by L-alanine but not by adenosine 5'-monophospha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 129 2 شماره
صفحات -
تاریخ انتشار 1977